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The drift velocity of water waves 
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The important role of viscosity in producing second-order Eulerian drift currents in 
the presence of small-amplitude water waves was first recognized by Longuet-Higgins 
(1953). 

The theoretical and experimental background is first reviewed. It is then shown 
that, contrary to previous belief, the presence of surface contamination must greatly 
enhance the drift velocity of short waves. We then solve an initial-value problem for 
the drift current associated with temporally decaying waves, thereby resolving ques- 
tions raised by the work of Liu & Davis (1977), whose solution exhibits anomalous 
singularities. Next, the steady drift velocity of spatially decaying waves is calculated 
and shown to bear a close resemblance to Longuet-Higgins’ ‘conduction solution ’ for 
unattenuated waves. 

Finally, we establish that unidirectional drift currents of both surface and inter- 
facial waves are sure to be unstable to spanwise-periodic disturbances; the instability 
mechanism being identical to that first proposed by Craik (1977), and recently de- 
veloped by Leibovich & Paolucci (1981), to explain the generation of Langmuir 
circulations . 

1. Introduction 
Small-amplitude progressive surface gravity (or capillary-gravity ) waves are known 

to induce mean drift velocities in the direction of wave propagation. Stokes (1847) 
first predicted the drift velocity using inviscid theory, but Longuet-Higgins (1  953) 
established that the role of viscosity remains important even as the characteristic 
Reynolds number R approaches infinity. Much earlier, Rayleigh (1896, p. 340) had 
reached a similar conclusion for a related problem. 

More precisely, Longuet-Higgins showed that, just outside the thin oscillatory 
viscous boundary layer near the channel bottom, there is a constant O(a2) mean 
drift velocity, where a is a measure of wave amplitude; and also that, just beyond 
the corresponding boundary layer near the free and uncontaminated surface, there 
is a mean O(a2) gradient of drift velocity. Both these quantities persist even as 
R + 00 and may be regarded as boundary conditions for the mean Eulerian velocity 
D e ( z )  in the interior of the liquid. Whereas Se(z )  is identically zero according to purely 
inviscid theory, these results prove that this is not the case for real liquids. The mean 
Lagrangian drift velocity, or mass-transport velocity, is the sum of Se(z) and Stokes’s 
drift profile U&). 

For waves in dosed channels, it  is appropriate to impose a condition of zero net 
mass flux at  each downstream location x in calculating the steady-state drift velocity. 
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This requires that a horizontal hydrostatic pressure gradient be established by ‘set 
up’ of the free surface: that is, the mean depth must increase linearly with x. For 
spatially periodic waves in an unbounded domain, there is no such pressure gradient 
and the steady-state mass flux may be non-zero. 

Various experiments confirm the existence of mean drift-velocity profiles (see $ 3  
and Liu & Davis 1977) and certain features of the theoretical solution are in reasonable 
quantitative agreement with some of the experimental data. But it is fair to say that 
convincing agreement between theoretical and experimental profiles over the entire 
liquid depth is lacking. The work of the present paper indicates several possible 
reasons for this discrepancy, which are additional to those advanced by Dore (1977, 
1978). Particular attention is given to the effect of surface contamination and to a 
correction and extension of the work of Liu & Davis (1977) on temporally decaying 
waves. The case of spatially decaying waves is also examined. 

These extensions of the conventional theory, and the other extensions by Dore 
(1977, 1978) and Grimshaw (1981), are still unlikely, however, to provide good general 
agreement with experiment. Rather, it is argued that these theoretical drift profiles 
are usually inherently unstable to disturbances periodic in the spanwise direction. 
The mechanism for this instability is identical to that proposed by Craik (1977) and 
developed by Leibovich & Paolucci (1980, 1981) for the generation of Langmuir 
circulations; it differs from this previous work only in that the mean Eulerian current 
U&, t )  here derives purely from the wave motion rather than from an applied wind 
stress at the surface. The drift velocity of interfacial waves is also briefly considered 
and similar conclusions are drawn regarding its instability to spanwise-periodic 
perturbations. 

2. The theoretical background 
2. I. Periodic waves 

An inviscid irrotational surface wave with upwards surface displacement 

z = acos(kx-d) 

and small amplitude a has an associated velocity potential 

correct to O(a), where the Eulerian velocity is u = (u, w) = Vq5, the mean water depth 
is d and x is measured vertically upwards from the mean surface x = 0. The frequency 
cr satisfies the linear dispersion relation crz = [gk + p--lyk3] tanh kd, where g is gravi- 
tational acceleration, p the liquid density and y the coefficient of surface tension. 
For such spatially periodic waves, there is no O(a2) mean Eulerian current according 
to inviscid theory but Stokes (1847) found the mean Lagrangian, or mass-transport, 
velocity to be 

aka2 cosh [2k(z + d ) ]  
2 sin h2 kd U,(x)  = 

(see for example Phillips 1977, chap. 3). 
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Longuet-Higgins’ (1953) analysis of viscous effects is briefly summarized by 
Phillips (1977, pp. 54-58). Longuet-Higgins supposed that the waves are purely 
periodic in x and t and that the mean-drift profiles are functions of z alone. But, to 
maintain a purely periodic wave in viscous liquid, it  is necessary to do external work 
on the liquid and this can only be accomplished by the application of suitable stresses 
at the surface. Since Longuet-Higgins’ analysis requires that tangential stresses at  
the surface are zero, it  must be supposed that periodic normal stresses are applied of 
such magnitude and phase as to maintain the wave at  constant amplitude, despite 
viscous dissipation. 

With an uncontaminated surface, most of the energy dissipation takes place within 
the bottom boundary layer if 

P / k  9 sinh2kd, ,B ZE ( u / 2 v ) * .  

This bottom boundary layer has thickness O(P-l), and v denotes the kinematic 
viscosity of the liquid. The normal stresses then support a periodic pressure distri- 
bution in the interior which does work on the bottom boundary layer at a rate which 
exactly balances the rate of energy dissipation by viscosity within it. This pressure 
distribution has a slight phase shift relative to that given by inviscid theory. 

A steady (?(a2) mean Eulerian velocity i ie(z)  satisfies 
- 

d2Ue d - i d p  v- = -(uw)+-- 
dz2 dz pdx’ 

where dpldx  denotes a constant imposed horizontal pressure gradient (which may 
either be set equal to zero for unbounded channels or chosen to yield zelo total mass 
flux for closed channels), and -pUW denotes the time-averaged Reynolds stress T, 
resulting from the wave field. 

For the irrotational wave field (2 .1 ) ,  UW is identically zero. But treatment of the 
viscous boundary layer adjacent to the bottom, which has thickness of order 

p-1 = ( 2 v / u ) 1 <  d, k-1 
leads to 

- a2a2k uw = { 2 e - ~ z l ~ ( ~ z ’ s i n ~ ~ ’ + ~ ~ s ~ ~ ’ ) -  1 -e-282’}, 
4P sinh2 kd 

where z’ = z+d (cf. Phillips 1977, equation (3 .4 .30 ) ) .  Outside the bottom boundary 
layer, pz‘ -+ 00 and UW -+ (ZLW),, a constant given by 

The Reynolds stress remains constant throughout the region where the wave motion 
is irrotational. It is non-zero because the velocity potential has a correction O(ua@-l), 
induced by the bottom boundary layer, which is out of phase with (2.1). This correc- 
tion is 

ua cosh kz 
= 2 ~ 3  sin h2 kd 

[cos (kx- ut) +sin (kx - at)], 

which results in the non-zero Reynolds stress -p(uW), given in (2.5). For infinite 
depths kd -+ 00, both #1 and the Reynolds stress (ZCW), are zero. 

7-2 
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If it is assumed that due/& -+ 0 as /3z' + CQ, if dpldx is meantime taken as zero, 
and if the no-slip condition Ze(  - d )  = 0 is applied, integration of (2.3) leads to 

[3-2(/32'+ 2) e-Pz'cospz'- 2(/32'- 1)  e-~z'sinpz'+e-2bz'J (2.6) 
- va2k 

4 sinh2 kd U e  = 

(cf. Phillips 1977, equation (3.4.33)). This describes the mean flow within the bottom 
boundary layer, and it is readily seen that 

(2.7) u e  = +a2k cosech2 kd 

just outside this boundary layer (i.e. a t  distances z' = A such that P-l< A < k-l:  
we dispense with the formality of the multiple-scales technique in this paper, though 
the idea remains implicit). Result (2.7) added to the Stokes drift U s ( - d )  yields a 
'bottom ' mass-transport velocity which is # times the inviscid result, or 

- 

(Ze + ES),=-d+A = $a2k cosech2 kd. (2.8) 

Near the liquid surface, there is also a thin oscillatory boundary layer which is best 
studied using curvilinear co-ordinates which fit the wavy surface. With a clean surface, 
this viscous boundary layer is rather weak, having vorticity O(aku)  ; but Longuet- 
Higgins showed that it is nevertheless responsible for inducing a mean second-order 
vorticity outside this boundary layer such that 

(2.9) (dZe/dZ),,-, = 2ua2k2 coth kd. 

[d(Ze + U,)/~Z],,-, = 4ua2k2 coth Ed, 

This gives a vertical gradient of mass transport 

(2.10) 

or twice the value predicted by Stokes. 
Conditions (2.7) and (2.9) may be regarded as boundary conditions which, together 

with (2.3)) determine the mean Eulerian flow in the interior of the liquid, outside the 
oscillatory boundary layers on either wall. It is readily confirmed that the omission 
of dpldx in deriving (2.7) incurs an error O(kA) ,  which is negligible. Likewise, these 
boundary conditions may be imposed at  z = - d and z = 0, setting A = 0 with negli- 
gible error. Of more concern is the assumption that dZe/dZ -+ 0 outside the bottom 
boundary layer, which was used in deriving (2.6). This assumption is apparently in- 
consistent with (2.3); for, in the interior, a ( E ) / a z  is zero, and 

due/& = (UP)-' (dpldx) z + 2aa2k2 coth kd, (2.11) 

on using (2.9). Heilce the correct matching condition for the bottom boundary layer 
as /3z' -+ CQ is 

dGe/dz + - (vp)-' (dpldx) d + 2aa2k2 coth kd. (2.12) 

This may indeed be ignored in the leading-order calculation which yields (2.7)) 
since it gives only a correction O(kA)  in Ze. However, this O(a2) velocity gradient is 
always present and so introduces some uncertainty in the interpretation of velocity 
measurements 'just outside the boundary layer'. A more meaningful quantity is the 
local maximum of ;iie which occurs near the bottom (see Longuet-Higgins 1953, 
figure 4). 
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Integrating (2.11) and using condition (2.7) leads to the Eulerian velocity distri- 
bution 

Se(z)  = *(~p)- ' (dp/d~)  ( ~ 2 - d d 2 ) + 2 ~ ~ 2 k 2 ( ~ + d ) ~ 0 t h k d + f c r a 2 k c o s e c h ~ k d .  (2.13) 

For unbounded channels, dpldx = 0; while, for closed channels, the zero-mass-flux 
condition 

( i ie+S, )dz  = 0 
S r d  

yields 
dpldx = 3d-3vp[ua2(8 + k2d2) coth kd + %ua2kd cosech2 kd] .  (2.14) 

In  the latter case, the mass-transport velocity is 

( z  + d )  [; 6 - 1) + * k W  (2 + l)] 
ua2 coth kd 

d2 
;i ie+Gs = 

+2sinh2kd cra2k ( 9 ( z ) a - f + c o s h [ 2 k ( z + d ) ]  a 2 

which is just Longuet-Higgins' (1953) 'conduction solution' for a progressive wave 
(see his equation (300)). Unluata & Mei (1970) give an alternative derivation of this 
solution, using Lagrangian dynamical equations from the outset. Dore (l970,1978a, b )  
has calculated the corresponding mass-transport velocities of interfacial waves in a 
two-fluid system (see $7) .  

Longuet-Higgins also presents a ' convection solution' for the mean flow, arguing 
that, under typical conditions, additional nonlinear convective terms in the mean- 
flow equations are likely to outweigh viscous diffusion. This is so for standing waves. 
It is also true for some considerable distance downstream of a wavemaker where the 
viscous boundary layers grow progressively in thickness (see Dore 1977) and may be 
true for mean flows associated with modulated packets of progressive waves (see 
Grimshaw 1981). However, for the unidirectional and unbounded mean flows envi- 
saged here, the convective terms are identically zero. In  this case, (2.15) is the appro- 
priate steady solution in two dimensions, attained after a time (or distance from a 
wave maker) sufficiently long for vorticity to diffuse throughout the whole fluid; and 
no restriction to small mean-flow Reynolds numbers max [Eel  d / v  is necessary. But, 
if the depth d is infinite, this steady state is never attained: a ' triple-deck' model with 
ever-deepening boundary layer is then appropriate (Dore 1977; Grimshaw 1981) until 
the penetration depth becomes sufficiently large that Coriolis effects are significant. 
A steady-state solution for infinite depth with Coriolis force has been given by Madsen 
(1978). 

2.2. Decaying waves 
If the liquid surface is truly free, with no applied normal stresses, the wave amplitude 
decays exponentially by viscous action at  a temporal rate 

cri = igp-lk cosech Zkd (2.16) 

(cf. Phillips, equation (3.4.29)), provided the liquid depth is sufficiently small that 
P/k 9 sinh2 kd. Alternatively, for deep-water waves with p/k < sinh2 kd, the damping 
rate is ui = 2vk2, which results from the viscous stresses within the irrotational mottion. 
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For intermediate depths a satisfactory approximation is given by the sum of these two 
expressions for ai : 

Ci = ta/3-'k cosech 2kd + 2vk2. (2.17) 

Waves may decay spatially with x, rather than temporally with t ;  to good approxi- 
mation, this spatial attenuation rate is ai(da/dk)-l when ai is small. These results 
may be drastically modified by the presence of surface contamination or the influence 
of the viscosity of air. 

For temporally decaying waves, the results of 9 2.1 for the drift velocity are no 
longer strictly applicable. In  particular, it is no longer meaningful to talk of a steady- 
state mass-transport velocity, reached at  suitably long times after the onset of wave 
motion. The influence of temporal decay has been investigated by Liu & Davis (1977). 
To linear approximation, the wave field is just as for a constant-amplitude wave, 
apart from the inclusion of the decay factor exp ( - f l i t ) .  Accordingly, the mean 
Reynolds stress - p G  is just as before, but with an additional factor exp ( - 2ait), 
and the boundary conditions for the second-order mean flow are 

(dZe/dx),,o = 2aa2k2 coth kd e-sqit, (2.18) 

(2.19) (Ze),=-,j = &ra2k cosech2 kde-2ait, 

analogous to (2.7) and (2.9) (see Liu & Davis, equations (4.53) and (5.10)). 
In  an Eulerian description, all the wave momentum is contained in the region above 

the wave troughs (see Phillips 1977, p. 40). The loss of this momentum, no longer 
replenished by surface forces, supports both the Reynolds stress -p(zLw) and the 
viscous stress pv(dZe/dz) at x = 0. 

The mean x-momentum equation outside of the viscous boundary layers (taking 
averages with respect to x, not t )  is 

(2.20) 

since ZLW is constant in this region, where now i i e  is a function of both z and t ,  and the 
pressure gradient ap/ax is a function oft only. 

Liu & Davis give a particular solution of (2.20), which satisfies (2.18) and (2.19). 
This corresponds to the decay rates ai of deep-water waves with P/k < sinh2 kd, 
namely 

= 2vk2 = ak2/P2, (2.21) 

rather than (2.16), though they supposed the depth to be finite. This inconsistency 
was criticized by Dore (19783) and the derivation of an equivalent solution for the 
decay rate (2.16) was given by Knight (1977). More generally, a solution of (2.18) to 
(2.20), valid for any small decay rate ai given by (2.17), is 

where S = (2rri/v)* and aplax = Pe-2nit ( P  constant). 
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This solution is singular at depths such that cos Sd vanishes. At depths other than 
these, the constant P may be chosen to yield zero total mass flux at  each instant t .  
This solution is clearly rather different from the steady conduction solution (2 .12) .  
Liu & Davis argue that, at the depths Sd = inn (n = 1 , 3 , 5 ,  . . .) for which the solution 
(2 .22)  is singular, no quasi-steady state varying as exp ( - 2ui t )  can result from an 
initial-value problem with U&, 0) initially zero. 

Of course, these singularities are physically irrelevant, since diffusion problems 
with finite initial and boundary values have only smooth solutions. This is confirmed 
in 3 5 ,  where the initial-value problem is solved. 

For spatially decaying waves, the temporally averaged second-order Eulerian 
velocity iie necessarily has a vertical as well as a horizontal component and so the 
convective terms (a,. V) ii, may not be negligible. This situation is examined in $ 6 .  

2.3.  Surface contamination. 

When the liquid surface is contaminated by a surface-active agent such as a thin - 
perhaps monomolecular - layer of detergent or certain oils, the character of the 
viscous boundary layer near the surface is much altered. Now, the surface can sustain 
tangential stresses due to changes in surface tension associated with varying surface 
concentrations of contaminant. The surface acts essentially as an elastic membrane 
which resists extension and contraction, though other physical effects such as surface 
viscosity and transfer of soluble contaminant between the surface and the bulk 
liquid may sometimes be significant. For a discussion of such matters, and further 
references, see Miles (1967), Smith & Craik (1971) or Gottifredi & Jameson (1968). 

While most of the energy dissipation with a clean surface occurs in the bottom 
boundary layer or, for deep-water waves, in the irrotational wave field, contamination 
enhances the dissipation in the boundary layer near the surface to such an extent 
that it may become the largest contribution. The influence of such contamination is 
modelled most simply by supposing that the surface is rendered inextensible though 
free to move as a whole: that is to say, the surface elasticity parameter is taken to be 
very large. This model yields an attenuation rate of 

ci = &ap-'k coth kd (2 .23)  

deriving from this surface layer alone (cf. Phillips, equation (3 .4 .28) ) ,  which exceeds 
(2.16) and (2.21). Although genuinely inextensible surface films are not encountered 
in nature (see Gottifredi & Jameson 1968), this 'inextensible limit' is known to yield 
results for short waves which are in broad agreement with those of real films with even 
moderately small elasticity. Indeed, the maximum damping rate of short waves occurs 
at such a moderate value, and is just twice that shown in (2.23).  However, as the 
wavelength increases, the influence of real surface films decreases: a fact not reflected 
by the inextensible model. In practice, short capillary-gravity waves are those most 
affected by contamination and for which the inextensible model is an acceptable 
approximation. 

For such waves, it is plausible that contamination may modify the second-order 
drift velocity. However, Phillips (1977, p. 58) suggests that the presence of contamina- 
tion does not alter the mean vorticity (2 .9 )  beneath the surface boundary layer, but 
simply induces a net velocity change across the layer (which can have no influence 
upon the drift velocity in the interior region. A similar conclusion was reached by 
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Huang (1970) and Dore (1972), but Huang employed an incorrect boundary condition 
and Dore does not give full analytical details. 

In  fact, their conclusion is certainly wrong. Phillips argues that the enhanced 
momentum loss due to contamination is accommodated by a non-zero Reynolds 
stress, even in deep water. This is an untenable view, however, since u.W is constant in 
inviscid regions and u, w -f 0 as z -+ - 00. Instead, the increased momentum loss-rate 
must induce a correspondingly greater mean vorticity just beneath the surface. The 
only case where this does not occur is that of a surface film which supports an appro- 
priate mean O(a2) tangential stress as well as fluctuating O(a) stresses. But such a 
mean stress necessitates a continuous, linear change of surface tension with down- 
stream distance x, brought about by a corresponding change in concentration of 
contaminant: a situation likely to obtain only over rather short distances near the 
‘edges’ of a slick. It is shown in 5 4 that, when the mean concentration of contaminant 
is independent of x, the boundary condition (2.9) i s  substantially modified by con- 
tamination, with consequent large changes in the theoretical drift velocity. 

3. The experimental evidence 
Evidence in support of the predicted drift velocity (2.8) near the channel bottom 

is fairly strong. Collins’s (1 963) results are the most comprehensive (and are reproduced 
in Phillips 1977, p. 56) but those of Russell & Osorio (1957) show similar agreement. 
Such good agreement is perhaps surprising, since the bottom boundary layer was 
observed to be unstable, or turbulent, in many of the reported cases: Longuet-Higgins, 
in an appendix to Russell & Osorio’s paper, hazards an explanation of this. Even 
when the bottom boundary layer is turbulent, which according to Collins occurs when 

(a/2v)*a cosech kd 2 80, 

this turbulence does not spread far from the wall: Russell & Osorio report typical 
depths of about 1 inch for this turbulent region. 

Longuet-Higgins (1960) himself made experimental observations to test result (2.10) 
for the gradient of mass transport near the surface. These visual studies of a deforming 
dye streak revealed a gradient quite close to (2.10) and certainly much greater than 
Stokes’ prediction. In contrast, Russell & Osorio’s observations show variable gra- 
dients which are typically larger than (2.10). One difference between the experimental 
conditions for these two sets of observations (made, incidentally, in the same channel) 
should be noted. Whereas Longuet-Higgins attempted to ensure a clean surface, 
Russell & Osorio deliberately introduced Teepol, a strongly surface-active detergent, 
‘in order to disperse the film of dirt which invariably formed’ and to obtain ‘surface 
drift velocities. . . stable and uniform across the section’. The difference in their results 
suggests that surface contamination may influence the drift-current gradient below 
the surface boundary layer. Furthermore, Dore ( 1 9 7 8 ~ )  has pointed out that good 
agreement with result (2.10) is not to be expected, even with a clean surface, owing to 
enhanced dissipation associated with viscous effects in the air above the free surface. 

Drift-velocity measurements which cover the whole depth of water are given by 
Russell & Osorio (1957), who determined the velocities of neutrally buoyant particles 
at various depths. They report that it ‘was possible to obtain drift velocities . . . inde- 
pendent of (downstream and spanwise) position and time. It is probable, however, 
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that the velocities would be distorted by circulations in a horizontal plane if the 
waves were not confined to a narrow channel.’ It was also pointed out by Longuet- 
Higgins (1953, p. 577) that ‘it is by no means certain that a steady state will exist 
which is compatible with the boundary conditions a t  both the wavemaker and at  
the wave absorber or that, if it exists, it is stable.’ The question of stability of the drift 
profile is examined in 3 7. 

Russell & Osorio’s profiles bear, at best, only a qualitative resemblance to the 
conduction solution (2.15); and the same is true of the measurements of Mei, Liu & 
Carter (1972). There are many possible reasons for this. Elapsed time and distance 
downstream from the wavemaker may have been insufficient for the complete diffusion 
of the viscous boundary layers; wave amplitudes may sometimes have been too large 
for meaningful comparison with weakly nonlinear theory; the use of Teepol profoundly 
alters the surface boundary conditions (see 9 4) for short waves; the longer waves are 
affected by the air boundary layer (Dore 1978a, b ) ;  unidirectional drift profiles are 
likely to be unstable to spanwise-periodic disturbances (see $7);  and side walls may 
exert a direct influence on the drift profiles. The various attempts to compare theory 
with these experiments - e.g. by Liu & Davis (1977) (who in any case erroneously 
include an exponential decay factor twice over in their curves for t + 0) and Grimshaw 
(1981) - should therefore not be taken too seriously. A truly definitive experiment on 
drift profiles is still lacking, so long after Stokes’s pioneering paper. 

4. Periodic waves with surface contamination 
The use of curvilinear co-ordinates, which fit the distorted free surface, is preferable 

to a Cartesian formulation. Essentially, the Cartesian formulation is justifiable only 
for wave amplitudes small compared with the viscous-boundary-layer thickness 
(cr/2v)-* = ,!-l; a severe restriction which may be unnecessary if suitable curvilinear 
co-ordinates are used. However, as a first approach to the present problem, a Cartesian 
analysis was developed because of its greater simplicity: the results so obtained agreed 
with the subsequent curvilinear analysis. For brevity, only the latter analysis is 
described here. We assume that the viscosity is sufficiently small that lal/k2v $ 1, 
and that the wave is maintained at  constant amplitude by a suitable distribution of 
periodic normal stresses at  the free surface. The bottom boundary conditions are 
u = w = Oatz = -d.  

In  the uncontaminated case, the free-surface boundary condition is that the 
linearized tangential stress there be zero. However, with surface contamination, this 
condition is no longer applicable. Instead, we here adopt the ‘inextensible’ model of 
the surface film which is known to give acceptable results under appropriate circum- 
stances (see 3 2.3 above). 

Within the surface boundary layer we adopt the orthogonal curvilinear co-ordinates 

a cosh [k ( z  + d ) ]  sin kx‘ 
sinh kd 

5 = XI- 

asinh [k ( z  + d ) ]  cos kx’ 
sinh kd y = z -  

where x’ = x- (cr/k) t. This reference frame is fixed relative to the wave and the 
inviscid irrotational solution equivalent to (2.1) is given by the stream function 
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Yo = - (u/k) y. More generally, we write Y = - (v/k) y +Y,(g, y), the velocity com- 
ponents (vt, vUr) in the directions of increasing E and y being 

vt = JkaY/ay, vUr = - JaaY/a<, (4.2) 
where 

[k(z + d ) ]  cos kx' a2k2[cosh2 k(z + d )  - sin2 kx] 
sinh2 kd + sinh kd 

is the Jacobian a(E, y)/a(x', z ) .  
The condition that the surface is inextensible is 

au coth kd cos k[ + (aYl/ay)Ur=o = 0 14-31 

in the linear approximation. Within the viscous boundary layer near y = 0, the span- 
wise vort,icity w has the form 

(4.4) w(5,y) = Re{dexp [ikE+Py(l -i)l) 

0 = J(a2yp,/at2 + a2yPl/a12) N a2y1/ay2 

Yl(E,~) = Re{aa(2~)-'cothkd(l +i)eikt[l -e8a(1-i) I> 

in the linear approximation, where .d is a constant and 

(cf. Phillips 1977, p. 47). This may be integrated to yield the linearized stream function 

(4-5) 

on imposing the boundary conditions ~ ~ ( 5 ,  0) = 0, (4.3) and a2Yl/ar]2 -+ 0 as py -+ - 00. 

We note that, as py -+ - 00, Yl remains non-zero; this represents the modification to 
the potential flow induced by the surface boundary layer. 

-vVx(Vxo) = V X ( 0 X U ) )  

The mean vorticity equation is 

which, in the vicinity of the surface y = 0, reduces to 

u[a4Y,/ay4 - 2a2akp3 coth2 kd el? (cos py + sin by)] 

= - a2u2k/3 coth2 kd em (cospy + sin by - e l s ) ,  (4.6) 

correct to O(a2), on using (4.5). Here, Y2(& y) denotes the stream function associated 
with second-order mean motion. Since p2 = u/2v, this reduces to 

a4Y2/ay4 = 2a2ukp3 coth2 kd e21r. 

a2Y2/ay2 = &a2ukpcoth2 kde2Pq + F(g),  
Integration gives 

if it is assumed that a3Y2/aqS 3 0 as py -+ 00 (which neglects the influence of any 
mean pressure gradient dpldx: a justifiable assumption). 

The mean tangential stress at the surface r] = 0 is 

If this is taken to be zero, as previously, then 

a2Y2/ay2 = a2ukpcoth2kd (y = 0). (4.9) 
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It follows that 

and hence that 
F(5)  = ta2gk/3 coth2 kd, 

~?2Y,/a7~ -+ $a2crkp coth2 kd (p7 3 - co) (4.10) 

just outside the surface boundary layer. 

the surface is 
In terms of the Cartesian co-ordinateslx’, z the mean Eulerian velocity gradient near 

(4.11) 

which may be evaluated just outside the surface boundary layer ( / 3 ~  -+ - co, x N 0) as 

The mean Eulerian velocity Se(z)  satisfies (2.3) in the interior, and the bottom 
boundary condition (2.7) is essentially unaltered by the presence of surface contami- 
nation. It is easily verified, aposteriori, that any influence on the free-surface boundary 
condition from a, mean pressure gradient dpldx required to remain zero mass flux 
(which was ignored in deriving (4.12)) is negligible compared with the leading-order 
term of (4.12). 

Condition (4.12) replaces (2.9) and shows that the mean velocity gradient below an 
inextensible surface is much greater than that below a clean one. Dore (l970,1978a, b )  
found a similar result for interfacial waves on a clean interface (see $ 7 )  and pointed 
out that the air boundary layer greatly affects surface gravity waves with wave- 
lengths of a metre or more. Since the inextensible free-surface model is most appropriate 
for short gravity and capillary-gravity waves, it is likely that, with surface contamina- 
tion, the boundary condition (2.9) may never be a good approximation for any 
wavelength ! 

The key to understanding these surprising results lies in the linear damping rate 
of the waves. In the present model, the waves are of constant amplitude, being main- 
tained against viscosity by periodic normal stresses. As described in $2, these stresses 
supply momentum to the waves at  a rate which equals the rate at which they lose 
momentum by viscous action. Since momentum is also lost in exerting a net force on 
the rigid lower boundary, the rate of momentum loss to the mean flow is usually less 
than the total loss. The difference between the total loss and the loss to  the lower 
boundary must equal the viscous stress of the Eulerian mean flow. For deep-water 
waves and for waves on contaminated surfaces, the loss to the lower boundary is small 
in comparison to the total loss. 

More precisely, the total mean stress below the level of wave troughs equals the 
mean horizontal force F per unit area owing to the periodic normal stresses at  the 
surface. Since the mean Reynolds stress - P ( U W ) ~  is constrained by the bottom 
boundary layer to be as in (2.5) - which vanishes for deep water - and, since the surface 
film is assumed to exert no mean horizontal stress, it follows that 
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But the rate of working of F is (a/k) F and this equals the rate at which wave energy 
E per unit area would decay in the absence of forcing. Since 

E = ( 2 k ) - ' p ~ ~ 2 ~ ~  coth kd 

(Phillips 1977, chap. 3), we have 

F = , 0 0 1  aa2 coth kd, 

v(dGe/dz),,, = coth kd(Ui- 3i) (4.13) 

where 3i denotes the temporal decay rate (2.16) due to bottom friction alone. 
is given by (2.17); and also 

with (4.12) for inextensible films, where ai is given by (2.23) to leading order and 
Bi/ai  is negligibly small. Equation (4.13) also gives the correct generalization for 
contaminated but extensible elastic films on substituting the appropriate value for ri 
(see 8 2).  For unforced waves, similar arguments apply and (4.13) is unaltered apart 
from the appearance of a decay factor exp ( - 2ai t )  on the right-hand side. 

The Stokes drift (2.2) is unchanged by the presence of contamination, as is the 
structure of the bottom boundary layer which yields the boundary condition (2.7) 
for the interior mean flow. However, the latter boundary condition requires some 
slight qualification in view of the large mean-flow gradients implied by the condition 
(4.12) for contaminated surfaces. With an inextensible surface, (4.12) and (2.3) yield 

This result agrees with (2.9) for clean surfaces where 

d,Ge/dz = (vP)-' (dp/dx) d + * ( a / 2 ~ ) 4  aa2k Coth2 kd 

if Tie is a steady flow. The bottom-boundary-layer solution then consists of (2.6) plus 
a term 

[(vp)-l (dpldx) d + &(g/2v)* aa2k coth2 kd] ( x  + d ) ,  

which is no longer negligible at  distances z + d of order p-' from the bottom. 
Wit'h zero pressure gradient, the steady-state Eulerian mean flow in the interior is 

Ge(2) = Ge( - d )  + (dGe/dz),,o (Z + d) ,  

where Ee( - d )  is given by (2.7) and (dGe/dz),=o by (4.12), for an inextensible surface. 
Since the latter is now so large, the bottom-velocity contribution Ge( - d )  is small over 
most of the interior region and 

Ge(z) = +(v/~v)*  aa2k Coth2 kd(z  + d )  (4.14) 

to leading order. With zero mass flux, the corresponding velocity distribution is 

Ge(z) &(v/~v)* aa2k Coth2 kd[z + d + %d-'(z2-d2)] (4.15) 

to the same order of approximation. This yields a theoretical velocity Ge(0) near the 
surface which is much greater than the bottom velocity (2.7). Also (4.15) far exceeds 
the Stokes drift (2.2) for most values of z. Note that the requirement up < 1, which 
would have been necessary for the validity of a Cartesian analysis of the surface 
boundary layer, is now the condition that the mean velocity (4.15) remains small 
compared with the wave orbital velocity. Since the latter requirement is essential for 
any weakly nonlinear theory, it seems that a Cartesian analysis would not have im- 
posed unnecessarily stringent assumptions in the present case, in contrast with the 
analysis for a clean surface. This result was unexpected. 
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5. Temporally decaying waves 
With a clean surface, the mean Eulerian flow associated with temporally decaying 

waves satisfies (2 .20)  and the boundary conditions (2 .18)  and (2 .19) .  A particular 
solution is (2.22) essentially as found by Liu & Davis (1977).  Here we consider the 
initial-value problem defined by (2.18)-(2.20) and the initial condition ;I;le(z,t) = 0 at  
time t = 0 corresponding to the onset of wave motion. We may represent the solution as 

- 
U e ( Z ,  t )  = Up(z, t )  + U c ( 2 ,  t )  

where U p ( z ,  t) denotes the particular solution (2.22) and U c ( z ,  t) satisfies 

(5.1) i 
a q a t  - Y(a2uc/az2) = 0,  

U,( - d, t) = 0, aiic(o, t)/az = 0, 

U c ( x ,  0 )  = - 5,(2, O ) ,  

- 

provided no mean pressure gradient other than that of (2.22) is present. This has the 
solution 

W 

'iic(z,t) = I: AncosA,zexp(-uh2,t), ( 5 . 2 )  

A, = - ( r / d ) ( n - + )  (n = 1 , 2 , 3 , . . * ) )  

n = l  
where 

and the coefficients A ,  satisfy 
m 

A ,  cos hnz  = - ( P / 2 r i p )  - (6-1 sin 62) (2ra2k2 coth kd) 
n = l  

+- -- 3aa2k ] ( 5 . 3 )  4 sinh2 kd ' 
::: [ 2& 2 S 1 r a 2 k 2  coth kd sin 6d - 

If, in fact, the net mass flux is zero at  each instant, it is necessary to impose an 
additional pressure gradient apc/i3x in (5.1) which is a function of time alone. How- 
ever, we here assume that ap/ax = 0 and hence that P in (5.3) is also zero. This allows 
non-zero mass flux, as is appropriate to an unbounded, spatially periodic model. 

It follows that 

4aa2k2 coth kd 
6d COB 6d 

A ,  = - 

cos 62 cos A, 2 ax s o  x jodsin[s(z+d)l cosh,zdx- 3ra2k 
2d cos Sd sinh2 kd - d  

( N  = 1)  2 ,3)  ...). 1 kd 3( - l ) N  6 
-t 2 sinh2 kd 

- - 
d(62- hi;) (5.4) 

However, this solution breaks down at  values of d such that A& = d2 and separate 
treatment of such cases is necessary. These values of d are just the singular depths of 
Liu & Davis's (1977)  particular integral (2 .22) .  

At large times t ,  the dominant contribution to U c  derives from the term in A, ,  
except possibly very close to the boundaries x = 0, - d. Then, 
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This term decays more or less rapidly than the particular solution (2.22) accordingly as 

n2v/4d2 2 20i. ( 5 4  

For deep-water waves, CT~ = 2vk2, and this condition becomes kd 5 in. Since kd 
certainly exceeds 1;. for deep-water waves, the dominant term as t -+ 00 is therefore 
(5.5) and not (2.22). For shallow-water waves, with 0.i given by (2.16), condition (5.6) is 

n2/8d2 >< (0/2v)* Ic cosech 2kd 

(where the right-hand side must be large compared with k2 in order that result (2.16) 
applies). Again, (5.5) rather than (2.22) is certain to dominate as t -+ 00 in most cases 
of interest. 

The singularities of the particular solution (2.22) arise at  values of 20i which coincide 
with one or other of the decay rates vA& of the modes of (5.2). The solution to the 
initial-value problem is then modified as follows. Suppose that 20.i = vA$ for a parti- 
cular integer M :  then the A,\, ( N  $; M )  are given by ( 5 . 4 )  as before, where 13 now 
equals -Aaz. Also, taking the sum of the particular solution (2.22) and the term in 
A ,  and considering the limit 20i -+ VAL leads to a non-singular particular solution of 
(2.18)-(2.20) incorporating terms of the form 

exp ( - vAil t )  [a, cos A, z + a2 sin h,z + a3( vA$ t cos h, z + A, z sin A ,  z ) ]  , 

where a,, a2, a3 are appropriate finite constants. Such terms have no singularity as 
z -+ co since the constant a3 is proportional to d-l as the depth d -+ m. The singularities 
of (2.22) have therefore been resolved and shown to be of no physical significance. A 
similar conclusion was reached independently by Grimshaw (1981 and private com- 
munication) by using Laplace transforms to solve the initial-value problem. 

The above treatment of time-dependent waves may readily be extended to decaying 
waves with a contaminated surface. Since the decay rate is still quite small in this 
situation, the mean flow within the viscous boundary layers may be regarded as quasi- 
steady and the boundary conditions just outside the viscous regions are then (2.7) 
and (4.12) or its generalization (4.13). Solutions equivalent to (2.22) and (5.2) are 
easily obtained and again exhibit no singular behaviour. 

6. Spatially decaying waves 
With spatial decay, the mean drift velocity cannot be strictly unidirectional since 

any x-variations in Z e  must be associated with a non-zero vertical velocity We. On 
writing 

- 
Fie(X, z, t )  = iW’,/az, we(x, z, t )  = - aY’,/ax, 

where Y2(x,  z ,  t )  denotes the stream function of the mean velocities, the mean-vorticity 
equation becomes 

where the right-hand side derives from the mean Reynolds stresses associated with 
the wave motion and the overbar now denotes a t,ime-average. 
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In the interior of the fluid, beyond the viscous boundary layers, the wave motion 
is described, as a first approximation, by the irrotational solution of the form 

u = Re{ik$exp[i(kx-at)]}, 

4 = A e-kz + Bekz, 

w = Re{$’exp[i(kx-at)]}, 

where the prime ( I )  denotes d/d.z. Such a solution remains appropriate for waves 
subject to slow spatial, as well as temporal, attenuat,ion. We suppose that the frequency 
Q is real, but the wavenumber k = k, + iki  now has a small non-zero imaginary part, 
related to the temporal decay rate discussed previously by 

ki = C T ~ C ~ ’ .  

Here, cg = da/dk is the group velocity of the waves, which may be regarded as real to 
sufficient accuracy. 

In such cases, the right-hand side of (6.1) is identically zero. On assuming, also, that 
the convective terms on the left-hand side of (6.1) a;.e negligible (not necessarily a 
good assumption, but certainly true for small enough wave amplitudes, and large- 
enough distances from the wavemaker), (6.1) reduces to the biharmonic equation. A 
steady-state solution exists with the form Y, = @,exp ( -  Skix), where 

(dZ/dX2 + 4kf)2 @, = 0. (6.2) 

@, = (A,+Clz)s in(2kix)+(B,+D,z)cos2k~z .  (6.3) 

Equation (6.2) has the general solution 

It is reasonable to suppose that, for realistically small decay rates ki, the boundary 
conditions a t  x = 0 and -d are essentially unaltered from those for unattenuated 
waves: this was verified a posteriori, in agreement with the independent analysis of 
Grimshaw (1981). Accordingly, we set 

3aa2k 
@,( -d)  = 0, @;( - d )  = --A = 4smh2k,d - p’ 1 

Q Z ( O )  = 9, @:((I) = 2aaZk,2cothk,d = 99,) 
where the prime denotes d l d z  and 2 exp ( - 2kix) is the net horizontal Eulerian mass 
flux at each station x. For closed channels, 2 must be chosen to cancel the downstream 
mass flux associated with the Stokes drift. These boundary conditions yield the 
appropriate values of A,, B,, C, and D, in (6.3). 

When kid is small - which is typically so - @, is given approximately by 

d4@,/dX4 = 0, 
which yields the solution 

with mean pressure gradient dpldx = 3(pd - *A?) cP3vp. 
This approximation yields Longuet-Higgins’ conduction solution for U e  = 2Y,/ax,  

modified by the attenuation factor exp ( - 2kix). Only when the downstream ‘attenua- 
tion length’ kc’ becomes comparable with (or less than) the liquid depth d does (6.3) 
give significant departures from this solution. 
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The range of validity of the approximation (6.5) requires clarification. This solution 
is valid at  times and distances downstream from the wavenumber sufficiently large 
that viscous diffusion extends throughout the depth d and convection effects are 
negligible. The solution therefore complements the convection-dominated steady 
boundary-layer solution of Dore (1977) which is valid nearer the wavemaker. The 
time-dependent analysis of Grimshaw (1981) treats, among other cases, that of the 
developing solution downstream of a wavemaker started at  time t = 0: this also leads 
to the conduction solution as t -+ 00, but Grimshaw’s more general analysis is inevitably 
more complicated than the present account. 

7. Instability of the drift profile 
The various drift-velocity profiles described above consist of two parts: the Eulerian 

component 5, and the Stokes drift Us. A satisfactory stability analysis of such drift 
velocities must account for the separate roles of these components. Fortunately, such 
an analysis already exists in the work of Craik & Leibovich (1976), Craik (1977) and 
more recent papers, particularly Leibovich & Paolucci (1980, 1981). This work was 
developed to describe the onset of Langmuir circulations in bodies of water subject 
to a wind stress, the essential dynamical mechanism being a coupling between the 
wind-driven Eulerian current and the Stokes drift of the surface-wave field. The 
governing equations were derived by Craik & Leibovich ( 1  976) (see also Leibovich 
(1980) for an alternative derivation) who calculated the secondary spanwise-periodic 
current system associated with a pair of monochromatic wave trains propagating 
obliquely to the wind direction. Using the same governing equations, Craik (1977) 
subsequently showed that initially unidirectional drift profiles are normally unstable 
to spanwise-periodic disturbances. Extensive computer solutions of the developing 
flow and further clarification of the stability properties are given by Leibovich & 
Paolucci (1980, 1981), who also investigate the influence of a stable density stratifica- 
tion. In addition to the various reported observations of Langmuir circulations in 
lakes and ocean, this phenomenon has been produced in the laboratory by Faller & 
Caponi (1978) and Faller (1978). 

In all the above-mentioned work, the mean Eulerian current was regarded as 
deriving from an applied wind stress, whereas the present paper concerns the Eulerian 
contribution driven by viscous boundary layers in the absence of wind. Despite this 
distinction, all of the above work is based on scaling assumptions identical with those 
used here and the results may be carried over directly to the present context. Inclusion 
of a wind-driven component in the Eulerian drift velocity would constitute a straight- 
forward extension of the present work. 

Mathematically, the linear instability of spanwise-periodic disturbances is akin to 
that of thermal-convection rolls; but the physical mechanism is entirely different, the 
essential process involving tilting of vortex lines by the Stokes drift gradient (see 
Craik 1977). Whereas Craik (1977) invoked the analogy with thermal convection to 
establish an approximate stability criterion, the recent work of Leibovich & Paolucci 
( 1  981) has now derived this precisely. They consider a monochromatic train of gravity 
waves in deep water, in which the mean velocity profile develops from rest in response 
to a constant su.rface stress T,, imposed at all times t 2 0. As well as the case of constant 
density, they treat stable uniform density gradients. 
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Although Leibovich & Paolucci (1981) regarded the stress 70 as due to a wind 
initiated at t = 0,  it  may just as readily be attributed to the free-surface boundary 
condition, e.g. (2.9), induced by viscous action on the waves. More precisely, if we 
suppose that a uniform wave field is rapidly set up at  t = 0 and that the waves are 
subsequently maintained at  constant amplitude by suitable periodic normal stresses 
at the surface, the analysis of Leibovich & Paolucci (1981) remains valid on replacing 
their ‘wind stress’ 70 = pui by 70 E pvUi(0) where ;iii(O) is the velocity gradient deter- 
mined by the free-surface boundary condition. For deep water of constant density 
and with a clean surface and no air boundary layer, Longuet-Higgins’ result (2.9) 
yields 

70 = pv2a(ak)2. (7.1) 

The alternative values with contamination or air boundary layer are usually much 
greater than this. 

Now, Leibovich & Paolucci found good agreement between a global energy-stability 
criterion, valid for nonlinear disturbances, and the results of a linear-stability analysis. 
For unstratified flow, they found global stability whenever a characteristic ‘inverse 
Langmuir number ’ 

is less than 1.46; and linear instability whenever L-I exceeds 1.52. The critical wave- 
number of linearized spanwise-periodic disturbances is 0*32k, where k is the wave- 
number of the gravity waves; and the optimum global stability limit was also obtained 
at  this value. 

Here, v denotes a constant eddy viscosity or, under laminar conditions, the actual 
kinematic viscosity of water. On replacing u* by (2va)*ak, in line with (7.1), we obtain 
the global-stability criterion 

’ a2ar1  c 1.03, ( 7 . 2 ~ )  

and the linear-instability criterion 

a2av-l > 1.07. (7.2b) 

The latter condition is normally well satisfied, except for waves of extremely small 
amplitude. For instance, with frequency a appropriate to wavelengths of 1 m and 
with kinematic viscosity v = om2 s-l, it  is satisfied for all amplitudes a greater 
than 0-037 cm! The corresponding condition with surface contamination or air 
boundary layer is even more easily satisfied. 

We may conclude with certainty that the unidirectional drift currents predicted by 
the theories described above will be unstable to spanwise-periodic disturbances, 
provided the depth or spanwise dimension of the flow is not unduly confined. It is 
possible, too, that such drift currents may be unstable to other modes of disturbance 
which vary in the downstream direction; but such modes are outside the scope of the 
present work. In any case, the existence of instability has been demonstrated and a 
lack of good agreement between two-dimensional theory and experiment - except 
near the bottom wall and free surface - seems likely to remain. 
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8. Interfacial waves: a postscript 
Drift-velocity profiles for progressive interfacial waves in a two-fluid system have 

been calculated by Dore (1970, 19783) and Dore & Al-Zanaidi (1979). They find 
induced Eulerian currents much larger - by a factor O [ ( a / k 2 v ) ) ]  - than those for a 
single fluid with a clean surface, provided the density difference remains large. Even 
for small density differences, as with a salt-water-fresh-water interface, an internal 
wave produces substantial mass flux. This result, a t  first sight surprising, is entirely 
consistent with the analysis of $ 4  above for a contaminated inextensible surface. 
In  both situations, the viscous boundary layers near the surface are much intensified 
and the appropriate drift velocity gradient dGe/dz outside these layers is O(cra2k/l) 
as in (4.13): this is in line with the increased linear damping rate of waves, as discussed 
in $4 above. 

The stability of such interfacial drift profiles is of particular interest, in view of its 
relevance to the dynamics of the oceanic thermocline. A necessary requirement for 
instability to spanwise-periodic disturbances is that the gradients of Eulerian and 
Stokes components of the drift velocity are of the same sign. In Dore’s solutions, this 
is so for a considerable distance, say d,, on either side of the interface. An ‘effective 
Rayleigh number’ is 

Ra = d! v-2(dGe/dz) (dGis/dx) 

on invoking the analogy with thermal convection (e.g. Craik 1977), where visa measure 
of the respective viscosities (assumed comparable) and t’he gradients of i i e  and ?is 
may be evaluated just beyond the interface. On supposing, also, that kd, is O(1) or 
more, R a  is found to be of order 

Ra - O{(adJ4 ks(gAp/p)t  v-21, 

where Ap denotes the density difference across the interface. This is likely to be a 
large number, indicative of instability, for circumstances typical of the laboratory 
and of lowest-mode internal waves on the ocean thermocline. 

As with wind-driven Langmuir circulations, but now in the absence of wind, in- 
stability of the surface-wave drift current (as discussed in § 7) will provide an effective 
mixing mechanism near the ocean surface. Not only do the longitudinal eddies them- 
selves act to mix the fluid. Near down-welling regions, the local downstream velocity 
profile may develop rather strong shear a t  considerable depths (cf. the computed 
profiles of Leibovich & Paolucci 1980) and such profiles may themselves be unstable, 
forming intermit,tent internal ‘billows ’ which further enhance mixing. Instability of 
the latter sort has been extensively studied by Thorpe (see for example Thorpe 
(1977), who gives other references). 

The drift velocity associated with lowest-mode internal waves is also likely to be 
unstable to spanwise-periodic disturbances; but it is not entirely clear how this would 
affect the thermocline structure. With long waves on a thermocline, a spanwise- 
periodic instability of the drift-current profile would produce a separate array of roll 
cells on either side of the density ‘jump’. In the author’s opinion, the associated 
vertical mixing would tend to cause an increase, rather than a reduction, in the 
density gradient within the thermocline. If this is so, the presence of small-amplitude 
internal waves may act to maintain a sharp thermocline against erosion by molecular 
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diffusion and other small-scale mixing motions. Experimental and observational 
verification of the instability of drift currents, and further measurements of actual 
drift-current profiles, are desirable. 

This work was mostly carried out during a visit to Cornell University, in the summer 
of 1980, supported by NSF Grant OCE-7915232 and a grant from the Science Research 
Council. I am most grateful to Professor S. Leibovich for arranging this visit and for 
discussions of this work, also to Dr M. E. McIntyre for constructive criticisms. 
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